
Exploration Research and

Technology Programs

Command & Data 
Handling and 
Software

Approved for public release; distribution is unlimited. Public Affairs release approval 
AFRL-2023-2756

1

8 June 2023

Tyler DeCaussin



Exploration Research and
Technology Programs

Command & Data Handling

Approved for public release; distribution is unlimited. Public Affairs release approval 
AFRL-2023-2756

2



Generates and stores all the 
telemetry you can; doesn’t 
all need to be downlinked.

Maintains team’s high level 
telemetry to downlink 

during ground contacts for 
monitoring subsystem 

health.

Has a time-to-live for state 
of health telemetry.

Keeps a command execution 
history.

Generates and stores 
subsystem metadata. 

Accept/reject counts, last 
communication time.

Should not store telemetry 
from subsystems that are 

powered off.

Utilizes data reduction 
techniques when applicable. 

Averaging, binning, 
compression

Provides hooks for 
command execution on 

mode transitions.

Has a way to verify 
command receipt with ease 

for in pass operations.

Keeps a command execution 
history.

Plans for the unexpected 
and have a native pass 

through command for all 
subsystems.

Has commands to change 
telemetry generation, 
storage, and downlink 

parameters.

Approved for public release; distribution is unlimited. Public Affairs release approval 
AFRL-2023-2756

3

What is it?



1. Bare metal or OS?

− Bare metal (no OS) means micro-controllers are a viable 
option

− An OS on a micro-controller is possible but often not 
practical

2. Power budget

− Instantaneous and average power draw limitations

− Is there a sleep mode and does that help?

− Frequency scaling using a governor may help slightly

3. Memory (RAM)

− The amount of memory required to run the OS and flight 
software

− Is there room to store flight software on a RAM disk?

4. Memory (Non-volatile)

− The amount of memory required to store the bootloader, 
kernel, OS, flight software, telemetry, and duplicates for 
any redundant copies.

− Can memory be added? SD card, eMMC, NAND, NOR, 
FRAM?

5. Interfaces

− Are there enough UARTs, SPI buses, I2C buses, USB, 
ethernet, etc…?

− Is the throughput high enough on each interface?

Approved for public release; distribution is unlimited. Public Affairs release approval 
AFRL-2023-2756

4

Processor Selection



Approved for public release; distribution is unlimited. Public Affairs release approval 
AFRL-2023-2756

5

Hardware

Beaglebone
Black

Raspberry pi TS-4100 MSP430FRxxx Atmel AVR 
(Arduino)

Single Board Computers Microcontrollers



Approved for public release; distribution is unlimited. Public Affairs release approval 
AFRL-2023-2756

6

OS Selection

OS None (Bare Metal) Linux RealTime OS

Power Draw Low (sleep modes) Higher Higher

Memory Consumption Low Higher Medium

Scheduling Deterministic Less Deterministic Deterministic

Dependencies Few More More

User Base Depends on processor Large Smaller

Learning Curve Steep Shallower Medium



Problem: Memory corruption is a common 
occurrence in space-based applications, and 

steps should be taken to mitigate mission 
ending corruption.

Generally orbits with high inclinations and 
altitudes have a harsher radiation environment.

Memory is particularly vulnerable when being 
written to and energized.

Memory Types: Some memory types are 
more resilient to radiation. Electronic 

memory is the least resilient to single event 
upsets; SD cards in particular are known to 
fail on orbit. Below are some more resilient 
memory types to use for high importance 

memory.

Phase change memory (PCM)

Ferrite RAM (FRAM)

Single-layer cell (SLC) NAND instead of Multi-layer 
cell (MLC) NAND

8 June 2023 Distribution C. U.S. Government and Contractors 7
Approved for public release; distribution is unlimited. Public Affairs release approval 

AFRL-2023-2756
7

Memory - Radiation



Mitigation Strategies: Shielding, error correction, and .
• Radiation hardened memory is effective, but expensive.

• Error correction

⚫ Error code correction (ECC), triple modular redundancy (TMR).

• Partitioning, provides some isolation to corruption and regular utilization.

• Hard reset, assuming the startup process is reliable resetting can be a viable response.

Error Correction Implementations:

MD5
• Hash comparison between recent computation and known good hash.

• No ability to correct file.

TMR
• Bit level verification and voting scheme between at least 3 file copies

• All versions scanned and majority vote wins minority bit values are corrected in differing files.

8 June 2023 Distribution C. U.S. Government and Contractors 8
Approved for public release; distribution is unlimited. Public Affairs release approval 

AFRL-2023-2756
8

Memory – Radiation Mitigation



Partitions: Partitions help to isolate memory usage. They are 
helpful for preserving space in critical areas if logs or 
telemetry grow to unexpected size and may be used to 
mitigate the spreading of corruption.

Suggested Practices:

• Critical memory should rarely be written to and have its 
own partition.

• Low priority, high write frequency files (like logs) should 
have their own partition.

• Keep redundant partitions for flight software, this allows 
TMR across multiple partitions.

• Leave an unused partition to fail over to for things like 
telemetry storage.

8 June 2023 Distribution C. U.S. Government and Contractors 9
Approved for public release; distribution is unlimited. Public Affairs release approval 

AFRL-2023-2756
9

Memory - Partitions



Problem: File systems that work well terrestrially are not always the best option for space based applications. 
The following are important factors in deciding on a file systems to use.

Memory Retirement: In flash, blocks may be marked as retired if a bad read or write occurs. Single event 
upsets can potentially wreak havoc on a partition by retiring large blocks of memory. Partitions may help to 
isolate some of this.

Power Loss: Unexpected power cycles can cause a filesystem to be corrupted. A journaling file system can be 
used to mitigate this, but it is still crucial to test and understand what the behavior is and potentially account 
for it with scrubbing or TMR.

RAM Disk: For files that do not need to persist, a RAM disk can be used instead of flash. This is particularly 
useful for files written to at a higher frequency because it will reduce wear and the likelihood of a single event 
upset.

Flash File Systems: Raw flash is handled differently than other memory types so JFFS2, YAFFS, and UBIFS are 
the main options.

8 June 2023 Distribution C. U.S. Government and Contractors 10
Approved for public release; distribution is unlimited. Public Affairs release approval 

AFRL-2023-2756
10

Memory – File System



⚫ Understand your process

− Bootloader → Kernel → OS → FSW

⚫ Identify and mitigate your risks

− Redundant bootloader, kernel?

− Scrub critical OS files?

− TMR flight software?

⚫ Handle memory failures

− Scrub, TMR, reformat, fail over?

Approved for public release; distribution is unlimited. Public Affairs release approval 
AFRL-2023-2756

11

System Startup



Approved for public release; distribution is unlimited. Public Affairs release approval 
AFRL-2023-2756

12

Startup Stages

Hardware Stage

• Checkout Memory

• Mounting

• I/O tests

• Correct Memory

• Disk check

• Reformat

• Fail over to 
alternate

• RAM disk

Software Stage

• Checkout Software

• Hash checks

• Correct Software

• Scrubbing

• TMR

• Reinstall

• Fail over

Monitor Stage

• Faults

• Trigger software 
restarts

• Trigger CDH reboot

• Trigger software 
reinstalls

• Reverts

• Only if on orbit 
software updates 



Flight software startup 
options

• Bash script to executes 
binaries

• Use services and Linux 
package management

Startup Verifications

• Startup scripts should 
include fail over logic in 
case of failure to run a 
binary.

• If on-orbit software 
updates are available, 
allow for reverting 
packages to previous 
version.

• Use radiation mitigation 
strategies

Failover Options

• A ‘gold copy’ of flight 
software should be kept 
in its own partition.

• OS partition backup 
(requires custom 
bootloader or other 
intricate design)

• Failover scenarios, such 
as SD -> NAND -> PCM -> 
RAM

8 June 2023 Distribution C. U.S. Government and Contractors 13
Approved for public release; distribution is unlimited. Public Affairs release approval 

AFRL-2023-2756
13

Software Start-up



Asynchronous 
Advantages: Polling not required

Disadvantages: Single connection

Considerations: GPIO limitations

Synchronous
Advantages: Multi-device bus

Disadvantages: Polling required

Considerations: Board layout

Single ended
• Advantages: Fewer data lines

• Disadvantages: Speed

• Considerations: Harness length

Differential
• Advantages: Speed

• Disadvantages: Additional data lines

• Considerations: Power utilization

Approved for public release; distribution is unlimited. Public Affairs release approval 
AFRL-2023-2756

14

Serial Protocol

Asynchronous Synchronous

Single-ended TTL, RS-232, RS-485 SPI, I2C, OneWire

Differential LVDS, RS-422 USB



Bus capacitance

• Numerous sensors on comm bus creates additional 
impedance

• Mitigation 1: Adding a buffer in line can reduce

• Mitigation 2: More separate comm buses

• Mitigation 3: Digital Mux different paths to comm 
bus.

Bad reads

• Even healthy comms will provide bad reads 
occasionally. 

• Add validity checking on values

• See SSC18-I-01: Dellingr: Reliability lessons learned 
from on-orbit

Stuck Bus lock out state

• Especially for critical subsystems

• Read more:
• See Analog AN-686

• Mitigation 1 (I2C): Add a buffer chip like Analog 
LTC4308 which automatically senses a stuck bus 
condition and pulses the SCL line

• Mitigation 2 (I2C): Command that can send 16x 
clock pulses on timeout

• Mitigation 3: Fault condition that power cycles all 
devices on comm bus

Approved for public release; distribution is unlimited. Public Affairs release approval 
AFRL-2023-2756

15

I2C / One Wire Communication Tips

https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=4062&context=smallsat
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=4062&context=smallsat
https://www.analog.com/media/en/technical-documentation/application-notes/54305147357414AN686_0.pdf


Benefits of Watchdogs

• To detect and recover from component or 
communication malfunctions

• Deterministic timed response to anomalies

Possible malfunctions

• Clock failure

• Stuck comms bus

• Program crashes

Types of Watchdogs

• Hardware-based
• GPIO tap reset

• Bus/component power supervisor

• Timing often defined by RC-circuits

• Pros: Reliable

• Cons: Fixed

• Software-based
• Software tap reset on Command

• Through UART, I2C etc

• Pros: Flexible

• Cons: Expects higher level of vehicle 
functionality

Approved for public release; distribution is unlimited. Public Affairs release approval 
AFRL-2023-2756 16

Fault Handling: Watchdog Timer



Approved for public release; distribution is unlimited. Public Affairs release approval 
AFRL-2023-2756

17

CDH Watchdog (Simple)

1 CDH taps Power supervisor

Fault – CDH fails to tap Power supervisor
Cause: FSW fault, OS fault, I/O failure, commanded reset
Effect: Supervisor removes power for 30 seconds

Power supervisor

CDH power

1

CDH

GPIO



Approved for public release; distribution is unlimited. Public Affairs release approval 
AFRL-2023-2756

18

CDH Watchdog (Use Case)

1 Microcontroller taps itself

2 Microcontroller taps Power supervisor

3 CDH taps Microcontroller

Fault 2 – Microcontroller fails to tap Power supervisor
Cause: Microcontroller fault, I/O failure, commanded
Effect: Supervisor removes power for 30 seconds

Fault 3 – CDH fails to tap Microcontroller
Cause: CDH fault, I/O failure
Effect: Microcontroller starves supervisor, prompting power reset

Fault 1 – Microcontroller fails to itself
Cause: Microcontroller fault
Effect: Microcontroller soft resets itself

CDH

Power supervisor

CDH power

Subsystem power

2 3 4

Microcontroller

1

4 Microcontroller taps CDH

Fault 4 – Microcontroller fails to tap CDH
Cause: Microcontroller fault, I/O failure
Effect: CDH starves Microcontroller (1), (hopefully) prompting power reset

UARTGPIO UART

Internal Register



• Startup pin states (high impedance, pull-down etc.)
• Avoid tripping watchdog during nominal startup

• Avoid floating pin states with pull-up or pull-down

• Consider AIT states of flat sat population

Approved for public release; distribution is unlimited. Public Affairs release approval 
AFRL-2023-2756

19

Watchdog Timer Tips



• Time requirements affect many subsystems and satellite operations
• Command execution accuracy
• Telemetry timestamp accuracy
• ADCS pointing accuracy based on knowledge of position, velocity, and time
• Synchronizing telemetry collects for payload(s)

• Time management on board a satellite needs to handle varying time 
knowledge circumstances to account for various CONOPS, fault handling, and 
GPSR lock conditions

• Satellite reboots
• Powering off GPSR due to entering low power modes
• Often a GPSR will be restarted as a fault response
• Attitude maneuvers may cause degradation or loss of GPS time knowledge

• Time sources, standards, and leap seconds may need to be accounted for
• UTC (GMT): -18s from GPS (currently) , -37s from TAI (currently)
• GPS: +18s from UTC (currently), -19s from GPS (always)
• TAI: +19s from GPS (always), +37s from UTC (currently)
• Linux epoch: Jan 1st 1970 00:00 UTC
• GPS epoch: Jan 6th 1980 00:00 UTC

Approved for public release; distribution is unlimited. Public Affairs release approval 
AFRL-2023-2756

20

Synchronizing and Managing Time



• Synchronizing to GPSR time with PPS
• GPS position, velocity, and time are accurate at a given PPS edge
• GPS time messages are sent after the PPS edge they correlate with
• GPS disciplined services may exist could be used with your GPS (e.g. chrony)

• Hardware and firmware/software implementation drives accuracy of time 
knowledge when relying on PPS

• Linux OSs are not real-time and have more limitations in PPS based time synchronization
• Interrupt driven events can have large latencies and jitter in some implementations
• Linux user space and kernel space implementations vary drastically

• FPGAs and microcontrollers are much more accurate in responding to GPIO interrupts like 
PPS

• Synchronizing time-based between CDH and data collects
• Starting collects on PPS edges can be a vary accurate way to start a data collect. This method 

can reduce the timestamping accuracy requirement.
• If disturbing the PPS signal to multiple subsystems, a signal buffer may be needed

• Maintaining time without GPS and across reboots
• Large jumps in time should be avoided, so time should be propagated accurately in cases of 

loss GPSR time
• RTCs can be used to keep moving time forward which is important for telemetry 

timestamping

Approved for public release; distribution is unlimited. Public Affairs release approval 
AFRL-2023-2756

21

Synchronizing and Managing Time

Time Message

~10ms



Integrated Functional Testing Considerations

Approved for public release; distribution is unlimited. Public Affairs release approval 
AFRL-2023-2756

22

Testing Interfaces

Radiating over an RF path isn’t always allowed or possible.

• Redirect flight software to a test interface and FEP

• Use an RF switch and attenuators to directly connect radio to ground station

• Turn file logging up and use ssh to verify functionality.

During thermal vacuum testing, the satellite will be powered down during temperature 
transitions.

• Provide hooks to EGSE to read temperature sensors



Exploration Research and
Technology Programs

Software

Approved for public release; distribution is unlimited. Public Affairs release approval 
AFRL-2023-2756

23



• Software is defined as the programs and other operating information used by a computer

• Software defined satellites:
• Decouple network control and routing functions (directly programmable)

• Can be written to quickly manage, secure, and optimize network resources

• Modify beams, capacity, and power distribution dynamically

• Allows the operator the ability to reconfigure the satellite, if/when needed

Approved for public release; distribution is unlimited. Public Affairs release approval 
AFRL-2023-2756

24

What is Software?



• Define a process
• How and when will things occur

• Formal software reviews

• Peer reviews

• How are priorities decided

• How is tasking assigned
• Plan out tasks in advance and track progress

• Use trello, bitbucket tasks, Jira, etc…

• Have frequent tag-up meetings
• Share progress

• Ask for help, talk about blockers

• Continuous integration
• Doxygen

• Style check

• Valgrind

Approved for public release; distribution is unlimited. Public Affairs release approval 
AFRL-2023-2756

25

Workflow



• Originates with manufacturing and 
construction processes

• Project mindset

• Slow phase transitions
• Each phase depends on the deliverables of the 

previous ones

Pros
• Clearly links requirements to production
• Useful tool for defining milestones

Cons
• “make it up before you start, live with the 

consequences”
• Deadline creep – every phase delay delays the 

next

Requirements

Analysis

Design

Coding

Testing

Approved for public release; distribution is unlimited. Public Affairs release approval 
AFRL-2023-2756

26

Organization Method – Waterfall Methodology

Operations

en.wikipedia.org/wiki/Waterfall_model#Model



• Originates with software development

• Adaptive mindset 

• Frequent phase transitions

• Work divided into iterative cycles 
• Ex. Time constrained, or feature constrained

Pros
• Flexibility for scheduling work

• Ability to re-vector based on priority (hardware 
availability, etc.)

• Ability to rapidly correct issues
• Providing releases early (Minimum Viable Product)

Cons
• “make it up as you go along”
• Ability to rapidly create issues
• Does not inherently guarantee requirements are 

met

Approved for public release; distribution is unlimited. Public Affairs release approval 
AFRL-2023-2756

27

Organization Method – Agile Methodology

Planning

en.wikipedia.org/wiki/Agile_software_development#Agile_software_development_principles



Planning

Requirements

System Design

System Implementation

System Test

Approved for public release; distribution is unlimited. Public Affairs release approval 
AFRL-2023-2756

28

Organization Method – AgileFalling Methodology

Implementation

en.wikipedia.org/wiki/Agile_software_development#Agile_software_development_principles

Maintenance

en.wikipedia.org/wiki/Waterfall_model#Model



Planning

Requirements

System Design

System Implementation

System Test

Approved for public release; distribution is unlimited. Public Affairs release approval 
AFRL-2023-2756

29

Organization Method – AgileFalling Methodology

Implementation

en.wikipedia.org/wiki/Agile_software_development#Agile_software_development_principles

Maintenance

en.wikipedia.org/wiki/Waterfall_model#Model

Hybrid process of traditional waterfall and agile methodologies: Increases responsiveness, Frequent, 
early software releases/milestones, Early opportunity for correction and feedback



• Version Control Systems is the practice of tracking and managing changes to digital files

• Keeps a complete history of file changes
• Tracking every modification in a special database

• Allows roll-backs and version comparisons

• Allows code branching for parallel feature development

• Using a repository provides a home for code that accessible by entire team 
• Is not just one programmer’s laptop

• Complements the team’s workflow with deliverables and testing support

Approved for public release; distribution is unlimited. Public Affairs release approval 
AFRL-2023-2756

30

Version Control Systems (VCS)

Version Control System Tools

Git

Mercurial

SVN (Subversion)



• Driven by mission objectives: Define your Minimum Viable Product (MVP)

• Hybrid of traditional requirements used to derive user stories

• User stories: try to stay away from how and focus on what and why
• WHO “wants to” DO A SOMETHING “so that” THERE IS SOME BENEFIT/OUTCOME

• Define “Definition of Done” – testable outcome/product

• Make sure to time box, e.g. if you cannot finish the story in one sprint then it should probably be broken 
up (could be steps in a larger process)

• Incorporate feedback 

• Benefits
• Keep focus on user/operator/consumer

• Drive creative solutions

• Enable collaboration

• Other user story considerations
• Epics – groups of user stories and associated features to realize a larger goal

• Spikes – information gathering or decision needed to move forward on another story or feature

Approved for public release; distribution is unlimited. Public Affairs release approval 
AFRL-2023-2756

31

Requirements



• Software Block Diagrams
• Capture process and data flow
• Interaction between components (application or 

modules)
• Define interface between blocks (parallel development, 

robust)
• Expand blocks to design/develop functionality

• Sequence diagrams
• Processing/handling constraints
• Illustrates where things can go wrong and how issue will 

be handled

• Design Concepts 
• Modularity – promotes reuse and parallel dev
• Low coupling 
• Hardware abstraction – reusability and testing
• Simplicity – ease of use and maintainability
• Target configuration versus hardcoded changes 
• Timing considerations ☺ (synchronization, persistence)
• Define faults and fault handling early 

• Timing Diagrams
• Processing time, Timeouts, Timing Dependencies

32

Design: Diagrams

Approved for public release; distribution is unlimited. Public Affairs release approval 
AFRL-2023-2756



• Develop generic reusable code, modules, plugins
• Depending on your library how you implement this may vary

• BufferUtils

• Common keepalive, watchdog handling

• Utilize configuration files
• Have a common style: Xml, environment files, command line arguments

• What strategy you use depends on how you want to make changes on orbit

• Shared memory
• Common values can be shared time, reboot count, etc.

• Synchronize timing

33

Design: Common Code

Approved for public release; distribution is unlimited. Public Affairs release approval 
AFRL-2023-2756



• Basic concept: detect a condition and 
respond

• Responses:
• Hard & soft resets
• Change mode
• Restart application
• Log an error
• Other

• Common Faults:
• Last successful uplink (days)
• Time since comms with subsystem
• Low battery
• ADCS momentum too high

• Watchdogs

34

Design: Faults

Approved for public release; distribution is unlimited. Public Affairs release approval 
AFRL-2023-2756



• Modes should be known good states
• Useful for recovery from fault conditions, set 

everything to known states

• Things to define
• Telemetry gathering

• Subsystem power states

• Fault conditions

Safe

Charging

Data 
Downlink

Science

Survival

35

Design: Modes

Approved for public release; distribution is unlimited. Public Affairs release approval 
AFRL-2023-2756



• Try to document as you go
• Language supported or independent (Doxygen, xml)

• Follow Language Coding Standards (C/C++ as an example)
• Easier to review/understand, easier to maintain, more consistent
• References

• C - https://users.ece.cmu.edu/~eno/coding/CCodingStandard.html
• C++

• Hits the high points: https://users.ece.cmu.edu/~eno/coding/CppCodingStandard.html
• Comprehensive: http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

• More than just style

• Enforcement
• Linters, clang-tidy

• Issue tracking (use tools)
• Capture notes, related resources, and progress (continuity between developers)
• Relay stage/status (ticket workflow, e.g. in Design, Implementation, Review, Testing)
• Tie issues/features to SCM system (e.g. Jira-> Bitbucket) 

36

Implementation

Approved for public release; distribution is unlimited. Public Affairs release approval 
AFRL-2023-2756

https://users.ece.cmu.edu/~eno/coding/CCodingStandard.html
https://users.ece.cmu.edu/~eno/coding/CppCodingStandard.html
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines


Peer Review

• FSW code review process followed with 
minimum of 2 reviewers 

• Benefits
• More in-depth review than is possible in a sit-

down meeting (e.g. component ratings)

• Tight collaboration within the team to keep all 
pieces progressing on a consistent design

• Catch bugs early

• Improved team awareness of code

Catch bugs 
early

Hold at least 
once at the end 

of each new 
feature

Check for 
potential 

logical bugs

Check for style 
and 

documentation 
(continuous 
integration)

Check tests; 
ensure they 

cover the 
intended cases

37

Review Structure

Approved for public release; distribution is unlimited. Public Affairs release approval 
AFRL-2023-2756



• Invest in Continuous Integration testing tool
• Validates all of the unit tests
• Compile source and documentation
• Static analysis (cppcheck, clang-tidy, cpplint, vera++, CHAP, LLVM/Clang Sanitizers)
• Dynamic analysis (valgrind and subtools, LDRA)
• Generate reports
• Know what broke and when
• Example Tools: Jenkins, Travis CI, Bamboo, GitLab CI

• Tie-in for testing/test results against user stores/requirements (e.g. Jira Test tickets linked to User Story 
tickets)

• Develop simulators/emulators to support testing
• Develop them only to the level needed for testing
• Use mocks/stubs when possible (easily control inputs to interface)

• Target abstracted hardware interfaces

• Feature/Unit Testing
• Define coverage goals
• Write meaningful tests
• Leverage existing frameworks, e.g. gtest, nunit
• Confirm core functionality

Approved for public release; distribution is unlimited. Public Affairs release approval 
AFRL-2023-2756

38

Testing – Unit Testing



• Exercise each piece thoroughly and then incrementally build up (easier to track what caused an issue)
• Confirm the full system interoperates as expected

• Define your test flow
• How you build up your testing and system
• Gates that must be passed to move to next phase

• Test Hardware-In-The-Loop (HIL) ASAP
• flat-sat, segmented test hardware

• Typical types/categories: 
• Acceptance Testing Procedure (ATP) - releases/deliveries
• Abbreviated Functional Tests (AFT) - minor/limited updates, hardware verification after environmental testing
• Full Functional Tests (FFT) - hardware checkouts, larger code updates, hardware verification after environmental testing
• Day In The Life (DiTL)

• Target as much real hardware as possible in ops environment

• Verify system meets requirements/mission objectives

• Train “operators”

• Find pain points, learn how to resolve anomalies on the ground

• Tune configuration

• Fault testing
• Test against hardware (when safe and possible)

• Use simulators remaining for any faults

• Automated where/when possible (trade between time to automate versus repetition)
• Reduce error
• Automatically capture results
• Test early and often
• Test-as-you-fly – ideally automated test environment, scripts, tools, etc can be leveraged for operations

Approved for public release; distribution is unlimited. Public Affairs release approval 
AFRL-2023-2756

39

Testing – System/ Integration Testing



• Types
• Corrective – fix bugs
• Adaptive – account for hardware changes/degradation or new stretch goals
• Perfective – address things like ease of operations
• Preventative – forward looking to avoid serious problems in the future

• Mission lifespan support
• On-orbit updates: functional changes, bug fixes

• Define release process, testing process, update process (upload procedure and verification)

• Plans for handling degradation of hardware: solar array efficiency, battery capacity
• Ideally configuration changes

• Reuse in other missions/programs
• Plan for LTS or ROI
• Bug fixes/tracking
• Improved design
• Implement enhancements

• Documentation

• Retire/EOL – source, build artifact preservation

40

Maintenance

Approved for public release; distribution is unlimited. Public Affairs release approval 
AFRL-2023-2756



• Encourage aptitude within the team
• Fosters innovation

• Promotes ownership

• Prioritize readability and reusability in code
• Modular architecture

• Avoid monolithic architectures that are complex and not reusable

• Write code that reviewers can review meaningfully
• If it is hard to read, it is hard to review

• Ex. Nested for-loops versus broken out functions

• Provide programmers with convenient access to hardware for rapidly testing code
• Having an minimum viable test setup for software task

• Look for a COTS development board, or a cheap COTS equivalent

41

Tips for Collaboration

Approved for public release; distribution is unlimited. Public Affairs release approval 
AFRL-2023-2756



Questions?

Approved for public release; distribution is unlimited. Public Affairs release approval 
AFRL-2023-2756

42


	Slide 1: Command & Data Handling and Software
	Slide 2: Command & Data Handling
	Slide 3: What is it?
	Slide 4: Processor Selection
	Slide 5: Hardware
	Slide 6: OS Selection
	Slide 7: Memory - Radiation
	Slide 8: Memory – Radiation Mitigation
	Slide 9: Memory - Partitions
	Slide 10: Memory – File System
	Slide 11: System Startup
	Slide 12: Startup Stages
	Slide 13: Software Start-up
	Slide 14: Serial Protocol
	Slide 15: I2C / One Wire Communication Tips
	Slide 16: Fault Handling: Watchdog Timer
	Slide 17: CDH Watchdog (Simple)
	Slide 18: CDH Watchdog (Use Case)
	Slide 19: Watchdog Timer Tips
	Slide 20: Synchronizing and Managing Time
	Slide 21: Synchronizing and Managing Time
	Slide 22: Testing Interfaces
	Slide 23: Software
	Slide 24: What is Software?
	Slide 25: Workflow
	Slide 26: Organization Method – Waterfall Methodology
	Slide 27: Organization Method – Agile Methodology
	Slide 28: Organization Method – AgileFalling Methodology
	Slide 29: Organization Method – AgileFalling Methodology
	Slide 30: Version Control Systems (VCS)
	Slide 31: Requirements
	Slide 32: Design: Diagrams
	Slide 33: Design: Common Code
	Slide 34: Design: Faults
	Slide 35: Design: Modes
	Slide 36: Implementation
	Slide 37: Review Structure
	Slide 38: Testing – Unit Testing
	Slide 39: Testing – System/ Integration Testing
	Slide 40: Maintenance
	Slide 41: Tips for Collaboration
	Slide 42: Questions?

